知识点总结与练习题
核心概念 (Core Concept):如果 \(a^x = n\)(其中 \(a \neq 1\)),那么 \(\log_a n = x\)。这里 \(a\) 称为对数的底数。
公式 (Formula):\(\log_a n = x \Leftrightarrow a^x = n\)
定义 (Definition):对数具有以下基本性质:
应用场景 (Application):用于解决指数方程和简化复杂计算。
核心方法 (Core Methods):
题目:将 \(3^2 = 9\) 写成对数形式
解题步骤说明:
题目:将 \(\log_2 \left(\frac{1}{8}\right) = -3\) 写成指数形式
解题步骤说明:
将以下语句写成对数形式:
a) \(4^4 = 256\)
b) \(3^{-2} = \frac{1}{9}\)
c) \(10^6 = 1000000\)
d) \(11^1 = 11\)
e) \((0.2)^3 = 0.008\)
答题区域:
将以下语句用幂的形式重写:
a) \(\log_2 16 = 4\)
b) \(\log_5 25 = 2\)
c) \(\log_9 3 = \frac{1}{2}\)
d) \(\log_5 0.2 = -1\)
e) \(\log_{10} 100000 = 5\)
答题区域:
不使用计算器,求以下对数的值:
a) \(\log_2 8\)
b) \(\log_5 25\)
c) \(\log_{10} 10000000\)
d) \(\log_{12} 12\)
e) \(\log_3 729\)
f) \(\log_{10} \sqrt{10}\)
g) \(\log_4 (0.25)\)
h) \(\log_{0.25} 16\)
答题区域:
不使用计算器,求满足以下条件的 \(x\) 值:
a) \(\log_5 x = 4\)
b) \(\log_x 81 = 2\)
c) \(\log_7 x = 1\)
d) \(\log_2 (x - 1) = 3\)
e) \(\log_3 (4x + 1) = 4\)
f) \(\log_x (2x) = 2\)
答题区域:
使用计算器计算以下对数,保留三位小数:
a) \(\log_9 230\)
b) \(\log_5 33\)
c) \(\log_{10} 1020\)
d) \(\log_e 3\)
答题区域:
a) \(\log_4 256 = 4\)
b) \(\log_3 \frac{1}{9} = -2\)
c) \(\log_{10} 1000000 = 6\)
d) \(\log_{11} 11 = 1\)
e) \(\log_{0.2} 0.008 = 3\)
a) \(2^4 = 16\)
b) \(5^2 = 25\)
c) \(9^{\frac{1}{2}} = 3\)
d) \(5^{-1} = 0.2\)
e) \(10^5 = 100000\)
a) \(\log_2 8 = 3\)(因为 \(2^3 = 8\))
b) \(\log_5 25 = 2\)(因为 \(5^2 = 25\))
c) \(\log_{10} 10000000 = 7\)(因为 \(10^7 = 10000000\))
d) \(\log_{12} 12 = 1\)(因为 \(12^1 = 12\))
e) \(\log_3 729 = 6\)(因为 \(3^6 = 729\))
f) \(\log_{10} \sqrt{10} = \frac{1}{2}\)(因为 \(10^{\frac{1}{2}} = \sqrt{10}\))
g) \(\log_4 (0.25) = -1\)(因为 \(4^{-1} = \frac{1}{4} = 0.25\))
h) \(\log_{0.25} 16 = -2\)(因为 \((0.25)^{-2} = 4^2 = 16\))
a) \(\log_5 x = 4 \Rightarrow x = 5^4 = 625\)
b) \(\log_x 81 = 2 \Rightarrow x^2 = 81 \Rightarrow x = 9\)(因为 \(x > 0\))
c) \(\log_7 x = 1 \Rightarrow x = 7^1 = 7\)
d) \(\log_2 (x - 1) = 3 \Rightarrow x - 1 = 2^3 = 8 \Rightarrow x = 9\)
e) \(\log_3 (4x + 1) = 4 \Rightarrow 4x + 1 = 3^4 = 81 \Rightarrow 4x = 80 \Rightarrow x = 20\)
f) \(\log_x (2x) = 2 \Rightarrow x^2 = 2x \Rightarrow x^2 - 2x = 0 \Rightarrow x(x - 2) = 0 \Rightarrow x = 2\)(因为 \(x > 0\))
a) \(\log_9 230 = 2.477\)
b) \(\log_5 33 = 2.172\)
c) \(\log_{10} 1020 = 3.009\)
d) \(\log_e 3 = 1.099\)